The Nervous System Action potentials

Jennifer Carbrey Ph.D. Department of Cell Biology

Nervous System

Cell types neurons glial cells Methods of communication in nervous system – action potentials How the nervous system is organized central vs. peripheral

Voltage Gated Na⁺ & K⁺ Channels

image by Rick Melges, Duke University

Depolarization of the membrane is the stimulus which leads to both channels opening. To reset the Na+ channel from inactive to closed need to repolarize the membrane. *Refractory period* is when Na+ channels are inactivated.

Duke UNIVERSITY

are rapid, "all or none" and do not decay over distances

top image by image by Chris73 (modified), <u>http://commons.wikimedia.org/wiki/File:Action_potential_%28no_labels%29.svg</u>, Creative Commons Attribution-Share Alike 3.0 Unported license bottom image by Rick Melges, Duke University

Unidirectional Propagation of AP Time image by Rick Melges, Duke University

Action potentials move one-way along the axon because of the absolute refractory period of the voltage gated Na+ channel.

Axon Initial Segment

Duke

image by Rick Melges, Duke University

Integration of signals at initial segment

Large diameter, myelinated axons transmit action

potentials very rapidly.

Voltage gated channels are concentrated at the nodes.

Inactivation of voltage gated Na+ channels insures uni-directional propagation along the axon.

Key Concepts

An action potential is a wave of depolarization followed immediately by a wave of repolarization. During an action potential, *depolarization* is due to the movement of Na+ into the nerve cell. *Repolarization* is due to the movement of K+ out of the cell.

Action potentials are electrical signals that propagate without decrement along axons, are "all or none", have refractory periods, and uni-directional propagation in neurons.